
Acta Cryst. (2011). A67, 45–55 doi:10.1107/S0108767310042297 45

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 14 July 2010

Accepted 18 October 2010

# 2011 International Union of Crystallography

Printed in Singapore – all rights reserved

Generation of (3 + d)-dimensional superspace
groups for describing the symmetry of modulated
crystalline structures

Harold T. Stokes,a* Branton J. Campbella and Sander van Smaalenb

aDepartment of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA, and
bLaboratory of Crystallography, University of Bayreuth, Bayreuth, Germany.
Correspondence e-mail: stokesh@byu.edu

A complete table of (3 + 1)D, (3 + 2)D and (3 + 3)D superspace groups (SSGs)

has been enumerated that corrects omissions and duplicate entries in previous

tables of superspace groups and Bravais classes. The theoretical methods

employed are not new, though the implementation is both novel and robust. The

paper also describes conventions for assigning a unique one-line symbol for each

group in the table. Finally, a new online data repository is introduced that

delivers more complete information about each SSG than has been presented

previously.

1. Introduction

As CCD X-ray detectors have made it much easier to detect

the presence of incommensurate modulations, crystal-

lographic data-collection software packages have responded

with excellent tools for indexing and integrating incommen-

surate satellite reflections. User-friendly tools for phase

determination and structure refinement have also been

extended to include modulated structures so that non-

specialists can now deal effectively with incommensurate

modulations. The result has been a steady increase in the

number of modulated structures published each year.

The superspace formalism of de Wolff (1974) and Janner &

Janssen (1977) has become the accepted standard for

describing incommensurate structures involving displacive

and compositional waves. Within this formalism, the transla-

tional symmetry lost by an otherwise periodic three-

dimensional structure that experiences d integrally indepen-

dent incommensurate modulation waves is restored upon

embedding the structure in a higher (3þ d)-dimensional

[(3 + d)D] space. The symmetry groups that describe modu-

lated structures within this space are restricted by, amongst

other things, the requirement that their point operators not

mix the three external dimensions with the d internal

dimensions of the space, and are called superspace groups

(SSGs) to distinguish them from the general higher-

dimensional space groups. Because a modulated structure is

periodic in superspace, its superspace symmetry can be clas-

sified according to (3þ d)D Bravais classes. The same form-

alism and the same SSGs can also be used to describe

structures of composite crystals.

The (3þ d)D superspace Bravais classes for d ¼ 1, d ¼ 2

and d ¼ 3 were determined and classified by Janner et al.

(1983), a work that we abbreviate here as JJdW, and are now

tabulated in International Tables of Crystallography, Vol. C

(Janssen et al., 2004), which we abbreviate here as ITC-C. The

d ¼ 1 SSGs were first determined by de Wolff et al. (1981) and

corrected by Yamamoto et al. (1985). They are also tabulated

in ITC-C, which includes the symbol, Bravais class, point

group and reflection conditions of each group. The one-line

SSG symbols in ITC-C are derived from the basic space-group

symbols taken from International Tables of Crystallography

Vol. A (2002), which we abbreviate here as ITC-A. The online

database of Orlov & Chapuis (2005) further presents explicit

symmetry operators for each of the d ¼ 1 SSGs. While not

published in the scientific literature, the online database of

Yamamoto (1996, 2005) is the most extensive to date, and

includes tables of d ¼ 1, d ¼ 2 and d ¼ 3 SSGs. These tables

include reflection conditions and group operators for each

entry.

The present work is motivated by the need to correct errors

discovered in earlier tables and to provide more complete

information about the d ¼ 2 and d ¼ 3 SSGs. But in doing so,

we aim to build upon the content and format of previous work.

We have added entries to the tables which were omitted in

previous work, and also eliminated many duplicate entries.

Furthermore, we have explored the competing factors that

influence the assignment of a unique one-line symbol to each

(3þ d)D SSG and established conventions for accomplishing

this. These conventions govern the selection of a canonical

generating set of SSG operators from which a unique symbol

can be computed. Based on these results, we introduce a new

online data repository of d ¼ 1, d ¼ 2 and d ¼ 3 SSG infor-

mation (Stokes et al., 2010).

For the reader’s convenience, a list of abbreviations used in

this paper is given in the Appendix.



2. Generation of superspace groups

The external three-dimensional part of each ð3þ dÞD SSG G

is called the basic space group (BSG) G3D and corresponds to

one of the 230 three-dimensional crystallographic space

groups. Each SSG is also associated with d integrally inde-

pendent modulations, each characterized by a modulation

vector (q vector) in reciprocal space. The q vectors are

specified by the Bravais class of the SSG. We begin by speci-

fying the BSG G3D. We then try each superspace Bravais class

which is consistent with our choice of G3D. For example, if G3D

= 55 Pbam, then we would try every superspace Bravais class

where the three-dimensional part is P orthorhombic.

For orthorhombic groups, the permutations of the three

principal axes often result in additional settings of the BSG

relative to the modulation vectors (q vectors), which some-

times produce inequivalent SSGs. For example, we find that

Pbamð0; 0; �Þ000 and Pmcbð0; 0; �Þ000 are distinct SSGs with

Bravais class Pmmmð0; 0; �Þ and BSG No. 55 Pbam. Pmcb

turns out to be one of six possible permuted settings of Pbam.

In the first case, the q vector is perpendicular to a mirror plane,

and in the second case the q vector is perpendicular to a glide

plane. For orthorhombic groups, all possible permutations of

the axes of the BSG must be tried.

Each operator g 2 G can be written as an augmented

ð4þ dÞ � ð4þ dÞ matrix:

AðgÞ ¼

R 0 v

M " �
0 0 1

0
@

1
A: ð1Þ

R is a 3� 3 matrix and v is a three-dimensional column vector

from the operator fRjvg 2 G3D. " is an integer d� d matrix

and M is an integer d� 3 matrix which obeys the relation

(ITC-C)

P3

i¼1

qmiRij ¼
Pd
n¼1

"mnqnj þMmj; ð2Þ

where qmi is the ith component of the mth q vector in the

Bravais class. � is a d-dimensional column vector containing

internal phase shifts associated with each of the q vectors, i.e. it

represents the translations along the internal superspace

dimensions. The values of R and v come from G3D and are

known. The values of M and " are determined from equation

(2) and by the choice of the relative orientation of G3D and the

Bravais class, and are therefore also known. Only the values of

� remain to be determined. Each self-consistent choice for the

values of � gives rise to an SSG.

We find it helpful to refer to a set of SSGs that differ only in

the values of their �s (i.e. in their internal translations) as a

variable internal translation (VIT) class. After preparing a list

of the unique VIT classes, we solved the problem of deter-

mining the � values for the different SSGs within each VIT

class separately.

The possible choices for the values of � are constrained by

the group multiplication properties of G. Let us consider a set

of ‘representative’ operators fg1; g2 . . . gng in G, where n is the

order of the point group of G. In group-theoretical terms,

these operators are the coset representatives with respect to

the translation group of G. The product of two representative

operators, ga and gb, is given by

Ra 0 va

Ma "a �a

0 0 1

0
B@

1
CA

Rb 0 vb

Mb "b �b

0 0 1

0
B@

1
CA

¼

RaRb 0 Ravb þ va

MaRb þ "aMb "a"b Mavb þ "a�b þ �a

0 0 1

0
B@

1
CA: ð3Þ

There must be some representative operator gc such that

Rc ¼ RaRb; ð4Þ

"c ¼ "a"b; ð5Þ

Mc ¼ MaRb þ "aMb; ð6Þ

vc ¼ Ravb þ va ðmod 1Þ; ð7Þ

�c ¼ Mavb þ "a�b þ �a ðmod 1Þ: ð8Þ

Equations (4)–(7) are automatically satisfied because of the

group multiplication properties of G3D and the use of equation

(2) in constructing the representative operators. It is equation

(8) that gives us constraints on the values allowed for each �.
Because there are n2 pairs of operators, and each � has d

components, equation (8) provides n2d linear equations

containing nd unknowns.

Note that we must use a primitive setting of the SSG in this

procedure, where all lattice translations are represented by

integers, even those which are centering translations in the

conventional BSG setting. The primitive setting is necessary so

that the ‘mod 1’ in equations (7) and (8) includes all possible

lattice translations.

Because of the potentially large number of unknowns,

simultaneously solving equation (8) for the values of � for all

of the representative operators can be resource intensive in

practice. In order to improve the efficiency to a practical level,

we must first reduce the number of unknowns. Let us identify

ngen of the operators as generators, so that each of the

operators can be obtained by various products of these

generators. This implies that the � of each representative

operator can be written as a linear combination of the �s of the

generators:

�ij ¼ Bij þ
Pngen

k¼1

Pd
m¼1

Aijkm�km; ð9Þ

where �ij is the jth component of the � of the ith operator. Note

that we have ordered the representative operators so that the

first ngen operators are the generators. The sum is therefore

over the components of � in the generators.

One of the operators will be the identity. The components

of its � vector are zero, and the values of each of the A and B

coefficients are also zero. The values of A;B are also trivially

known for each of the generators. For i � ngen, we have
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Bij ¼ 0 ð10Þ

and

Aijkm ¼

�
1 if i ¼ k and j ¼ m;
0 otherwise:

ð11Þ

Knowing the values of A and B for the generators and for the

identity operator, we can then use group multiplication to

obtain numeric values of A and B for each of the other

operators. The order in which we generate the operators is not

important. But once the operators have been generated,

several facts become apparent. First, each operator gets

generated n times within the group multiplication table,

appearing once in each row and once in each column. Second,

the combination of generators used to produce a given

operator may be different for each of its instances within the

multiplication table. This implies that there are n copies of

equation (8) associated with a given operator (one for each

column of the table), each of which may yield different values

for A and B when that operator is expressed in terms of the

generators. Equivalently, we can say that the multiplication

table provides n distinct copies of equation (9), where the yth

copy can be indicated by a superscript. Finally, though any two

distinct copies of equation (9) may have different values of

the A and B coefficients, they will have the same � values, so

that all of the constraints on the representative �s can be

summarized as

B
ðyÞ
ij � B

ðyþ1Þ
ij

h i
þ
Xngen

k¼1

Xd

m¼1

A
ðyÞ
ijkm � A

ðyþ1Þ
ijkm

h i
�km ¼ 0 ðmod 1Þ

ð12Þ

for 1 � i � n, 1 � j � d, 1 � y � n� 1.

This constitutes nðn� 1Þd equations with ngend unknowns.

Linear equations that involve (mod 1) equality can be solved

in a straightforward manner using Smith normal forms

(Grosse-Kunstleve, 1999). We obtain a finite number of solu-

tions. From each solution, we then generate the representative

operators of an SSG.

The solutions to these equations are generated to produce

every possible SSG of a given VIT class at least once, but they

also tend to produce multiple appearances of many SSGs. For

this reason, it is necessary to have an effective means of testing

two sets of SSG operators to determine whether they corre-

spond to distinct SSGs or to different settings of the same

group, in which case they are equivalent.

Two SSGs are equivalent if there exists an affine transfor-

mation matrix S of a specified form such that for every

operator g in the first group, SgS�1 is an operator in the second

group. For ð3þ dÞD SSGs in a primitive setting, the trans-

formation matrix must have the form

S ¼

SR 0 Sv

SM S" S�
0 0 1

0
@

1
A; ð13Þ

where SR is a 3� 3 matrix of integers, S" is a d� d matrix of

integers, SM is a d� 3 matrix of integers, Sv is a three-

dimensional column matrix of rational numbers, S� is a

d-dimensional column matrix of rational numbers, det SR ¼ 1

and det S" ¼ 1. If no such transformation exists, then the

two SSGs are not equivalent. This required form of S is

discussed in x3.5.2 of van Smaalen (2007) and is consistent

with the definition of equivalence used by de Wolff et al.

(1981).

We implemented a robust and efficient algorithm that

searches for such a transformation between two ð3þ dÞD

SSGs. The details of our algorithm will be described else-

where.

3. Tabulated superspace-group information

Upon tabulating all of the ð3þ dÞD SSGs for d ¼ 1; 2; 3, we

found 775 groups for d ¼ 1, 3338 groups for d ¼ 2 and 12 584

groups for d ¼ 3. Our d ¼ 1 list agrees well with the

comparable table in ITC-C.

We assigned a numerical identifier to each SSG, which

consists of four numbers: (1) the BSG (1–230), (2) the value of

d (1, 2, 3), (3) the Bravais class (1–24 for d ¼ 1, 1–83 for d ¼ 2

and 1–215 for d ¼ 3), and (4) a number that enumerates the

groups associated with each BSG. For d ¼ 1, we number the

SSGs in the same order as in ITC-C. For d ¼ 2; 3, the SSGs are

ordered by Bravais class within each BSG. Within each

Bravais class the order is arbitrary. For example, 51.3.122.769

is the 769th ð3þ 3ÞD SSG with BSG No. 51. Its Bravais class is

3.122.

The SSG symbol that we used consists of (1) a standard

symbol for the BSG, (2) d q vectors, each within their own

parentheses, and (3) symbols (0; s ¼ 1
2 ; t ¼ 1

3 ; q ¼ 1
4 ; h ¼ 1

6)

following each q vector indicating the intrinsic (i.e. origin-

independent) translations belonging to the internal coordi-

nates of each generator. We elected to use the simple symbols

0; s; t; q; h found in ITC-C rather than the more complicated

symbols m; g; d; a; b; c; n used by Yamamoto (1996, 2005) to

denote specific operations in d-dimensional internal space. We

also use (t ¼ � 1
3, q ¼ � 1

4, h ¼ � 1
6) to denote negative trans-

lations (van Smaalen, 2007).

As an example, consider

54:2:29:32 Pbcbð0; �1; 0Þ000ð0; 0; �2Þs00:

The BSG is No. 54 Pbcb with its axes permuted from the usual

Pcca setting. The two q vectors are ð0; �1; 0Þ and ð0; 0; �2Þ and

are associated with the internal coordinates t and u, respec-

tively. The three generators denoted by the BSG symbol Pbcb

are ðx; yþ 1
2 ; zÞ, ðx; y; zþ 1

2Þ and ðx; yþ 1
2 ; zþ 1

2Þ. The corre-

sponding generators of the SSG are ðx; yþ 1
2 ; z; t; uþ 1

2Þ,

ðx; y; zþ 1
2 ; t; uÞ and ðx; yþ 1

2 ; zþ 1
2 ; t; uþ 1

2Þ. All of the

intrinsic translations associated with the t and u coordinates of

these three generators are zero except for that of the u

coordinate of the first generator, which is 1
2, as denoted by

the ‘s’.

Because the sheer number of unique d ¼ 1, d ¼ 2 and d ¼ 3

SSGs is very large, and the data to be presented for each group

are quite extensive, it is impractical to attempt to include these

data as supplemental information, or even to archive them for
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internet download. Instead, our approach has been to create

an online software utility that accesses a minimal database of

essential data, and then generates a more extensive set of

information for a given group on demand. We also make the

essential data for each group available online in ASCII

(American standard code for information interchange) text

form. We collectively refer to the essential data and the

data-on-demand utility as the SSG(3 + d)D superspace-group

tables (Stokes et al., 2010).

At present, the SSG(3 + d)D tables can only be accessed via

the internet using a web browser. The web interface allows

one to download the complete database of essential SSG data.

It also provides three ways to obtain detailed information

about an SSG. (1) First, there is a page containing a long list

of hyperlinks, one for each d ¼ 1, d ¼ 2 and d ¼ 3 SSG.

Following one of these links calls the data-on-demand utility

and returns detailed information for the group selected. (2)

One can also select a specific SSG by entering its identification

number into a web form. (3) Finally, one can enter a list of the

SSG operators (either the complete set or just the generators),

which are then equivalence tested against any potential

matching groups in the SSG(3 + d)D tables. If the operators

obey a group multiplication table, they will match exactly one

group in the tables. Detailed information is then presented for

the matching group, along with the affine transformation

matrix T that takes the group operators from the user-

specified setting (i.e. the setting implied by the form of the

operators provided) to the reference setting used in the tables.

Thus, if gu is an operator entered by the user, then the

corresponding operator in the reference setting is

gr ¼ T � gu � T�1.

While additional information may be added to the output of

the data-on-demand utility in the future, it currently displays

the following information for each SSG: (1a) the SSG number,

(1b) the SSG label, (1c) a cross-reference to Yamamoto’s

tables when possible, (2a) the corresponding Bravais class

symbol, (2b) a cross-reference to the JJdW Bravais-class

tables when possible, (3)

the number and label of

the enantiomorphic SSG

when applicable and (4)

the transformation from

the BSG setting to the

conventional supercen-

tered group (SCG) setting.

It then presents (5a) the

modulation vectors, (5b)

the centering vectors, (5c)

the group generators and

(5d) the complete list of

group operators in the

BSG setting, followed by

(6a) the modulation vec-

tors, (6b) the centering

vectors, (6c) the group

generators, (6d) the com-

plete list of group opera-

tors and (6e) a minimal but complete set of reflection

conditions in the SCG setting.

Let us consider SSG 44.3.128.51 as an example. The detailed

information is given in Table 1. The SSG number and symbol

are followed by a cross-reference to group #3821 in Yama-

moto’s d ¼ 3 SSG tables. When multiple entries in Yamamo-

to’s tables turn out to be equivalent, we cross-reference all of

them. In similar fashion, the Bravais-class number and symbol

are followed by a cross-reference to the JJdW tables. Because

our Bravais-class numberings only differ from those of JJdW

for d ¼ 3 classes, we only cross-reference the JJdW tables for

d ¼ 3 classes. When an SSG is missing from the cross-refer-

enced table, the cross-reference is displayed as ‘none’.

The BSG setting is the setting in which the external part of

each operator has a form that matches the corresponding

entry for the three-dimensional BSG in ITC-A, and where

none of the centering translations include components along

the internal coordinates. The SCG setting, on the other hand,

eliminates any rational components in the q vectors and

otherwise simplifies the forms of the q vectors, often giving

rise to centering translations that include non-zero internal-

coordinate components. SSG(3 + d)D uses lower-case letters

for the BSG setting and upper-case letters for the SCG setting,

as seen in Table 1. In the example in Table 1, observe that the

supercentering transformation preserves the identities of a1,

a2, a3 and a6, while mixing a4 and a5. This also simplifies the

form of the modulation vectors, relative to their appearance in

the SSG symbol, doubles the cell volume, and provides two

new centering translations with non-zero internal-space

components.

The SSG operators associated with the general Wyckoff

orbit are presented in both the BSG setting and the SCG

setting. The SSG generators in the BSG setting are selected so

as to correspond precisely to the non-lattice generators of the

BSG symbol as they appear in ITC-A. The lattice-translation

generators are not listed here because they are obvious and

trivial to obtain. In Table 1, I2mm denotes three generators:
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Table 1
Detailed information for SSG 44.3.128.51.

Superspace group 44.3.128.51 I2mmð�1; �1; 0Þ000ð�1; �1; 0Þ000ð0; 0; �2Þ0s0 [Y: 3.3821]

Bravais class 3.128 Immmð�1; �1; 0Þð�1; �1; 0Þð0; 0; �2Þ [JJdW: 3.130]

Transformation to supercentered
setting

A1 ¼ a1, A2 ¼ a2, A3 ¼ a3, A4 ¼ a4 � a5, A5 ¼ a4 þ a5, A6 ¼ a6

Basic space-group setting

Modulation vectors q1 ¼ ð�1; �1; 0Þ; q2 ¼ ð�1; �1; 0Þ; q3 ¼ ð0; 0; �2Þ

Centering ð0; 0; 0; 0; 0; 0Þ; ð12 ;
1
2 ;

1
2 ; 0; 0; 0Þ

Non-lattice generators ðx; y; z; u; t; vÞ; ðx; y; z; u; t; vþ 1
2Þ; ðx; y; z; t; u; vþ 1

2Þ

Non-lattice operators ðx; y; z; t; u; vÞ; ðx; y; z; u; t; vÞ; ðx; y; z; u; t; vþ 1
2Þ; ðx; y; z; t; u; vþ 1

2Þ

Supercentered setting

Modulation vectors Q1 ¼ ðA1; 0; 0Þ;Q2 ¼ ð0;B1; 0Þ;Q3 ¼ ð0; 0;�2Þ, where A1 ¼ �1, B1 ¼ �1, �2 ¼ �2

Centering ð0; 0; 0; 0; 0; 0Þ, ð12 ;
1
2 ;

1
2 ; 0; 0; 0Þ, ð0; 0; 0; 1

2 ;
1
2 ; 0Þ, ð12 ;

1
2 ;

1
2 ;

1
2 ;

1
2 ; 0Þ

Non-lattice generators ðX;Y;Z;T;U;VÞ; ðX;Y;Z;T;U;V þ 1
2Þ; ðX;Y;Z;T;U;V þ 1

2Þ

Non-lattice operators ðX;Y;Z;T;U;VÞ; ðX;Y;Z;T;U;VÞ; ðX;Y;Z;T;U;V þ 1
2Þ; ðX;Y;Z;T;U;V þ 1

2Þ

Reflection conditions HKLMNP : M þN ¼ 2n; HKLMNP : H þK þ L ¼ 2n; H0LM0P : P ¼ 2n



(2) a twofold rotation about the a axis, (m) a reflection

through the ac plane and (m) a reflection through the ab plane.

The detailed form of the generators is useful when attempting

to interpret the SSG symbol, and will be discussed in more

detail below. Note that the ordering of the operator and

generator lists is identical in both settings, so that applying

the supercentering transformation to the nth operator or

generator in the BSG setting produces the nth operator or

generator in the SCG setting.

The list of reflection conditions includes both the centering

translations of the Bravais class and any non-lattice transla-

tions associated with non-symmorphic group operators. The

list of conditions displayed is always minimal, which means

each condition listed will result in some extinctions that are

not produced by any of the other conditions. The list is

always complete too, in the sense that any additional

reflection conditions that can be defined will fail to add new

extinctions to the set of extinctions already produced by the

conditions in the list. The list is not, however, unique, in the

sense that one can usually find other distinct lists of reflection

conditions that are both minimal and complete and which

describe the same set of extinctions. The SSG(3 + d)D tables

typically only express reflection conditions in the SCG setting.

When the BSG and SCG settings are identical, however, no

SCG data are presented in the SSG(3 + d)D tables. In such a

case, the reflection conditions are described in the BSG

setting.

4. Comparison with other tables

4.1. Bravais classes

Because our method of generating SSGs uses Bravais-class

data as input, it was important to have a table of Bravais

classes that was both accurate and complete. JJdW (Janner et

al., 1983) described and implemented a method for generating

all Bravais classes of a ð3þ dÞ-dimensional superspace. When

we implemented their method on computer, using our own

algorithm for testing equivalence, we found the following

errors in their tables.

(1) Two d ¼ 3 Bravais classes were omitted by JJdW:

P2=mð��0; 1
2 0�; 0 1

2 �Þ (our 3.23)

P2=mð�� 1
2 ;

1
2 0�; 0 1

2 �Þ (our 3.24).

(2) Four of the d ¼ 3 Bravais classes presented by JJdW are

equivalent to another class in their table. The equivalent pairs

are as follows:

7 P2=mð12 0�; 0 1
2 �; 00�Þ and 8 P2=mð12 0�; 0 1

2 �;
1
2 0�Þ

79 Pmmmð12 0�; 0��Þ and 83 Pmmmð12 0�; 1
2��Þ

82 Pmmmð12
1
2 �; 0��Þ and 85 Pmmmð12

1
2 �;

1
2��Þ

92 Ammmð12 0�; 0��Þ and 94 Ammmð12 0�; 1
2��Þ.

For each pair, the operators g1 of the group on the left can

be transformed into the operators g2 of the group on the right

by a similarity transform involving a (3þ dþ 1)-dimensional

affine transformation matrix S: g2 ¼ S� g1 � S�1. The affine

transformations that relate these four class pairs are, respec-

tively,

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

�1 0 0 1 0 1 0

0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

�1 0 0 1 0 1 0

�1 0 0 1 1 0 0

0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

�1 �1 0 1 0 1 0

�1 0 0 1 1 0 0

0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

and

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

�1 0 0 1 0 1 0

�1 0 0 1 1 0 0

0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Because adding two new classes and removing four duplicate

classes force a renumbering of the d ¼ 3 table, we took this

opportunity to further modify the class numbering so that

classes with the same Q vectors in the SCG setting are

grouped together in the table. In contrast, JJdW tended to

group classes according to the appearance of their q vectors in

the setting of the BSG. While neither Q-centric nor q-centric

orderings conflict for any of the d ¼ 1 or d ¼ 2 classes, they do

occasionally conflict for d ¼ 3. For example, the Q vectors for

JJdW class 162 P4=mmmð�00; 00�Þ are ðA; 0; 0Þð0; 0;�Þ, while

the Q vectors for JJdW class 166 P4=mmmð�00; 1
2

1
2 �Þ are

ðA;A; 0Þð0; 0;�Þ. The q vectors of these groups appear to

have the same form, but the Q vectors do not. JJdW’s classes

162–165, 167, 169–170, 173–174, 177–179 share the form

ðA; 0; 0Þð0; 0;�Þ, and classes 166, 168, 171–172, 175–176, 180–

181 share the form ðA;A; 0Þð0; 0;�Þ, so that these two forms

effectively get intermingled. We reordered these classes so

that those with the first form of Q are consecutive followed by

those with the second form of Q.

Our notation is similar to that of JJdW except that we

specifically present all of the d q vectors and not just the

generating q vectors. Also, we use subscripts on �; �; �
rather than employing additional symbols (e.g. 	; �; �; 
;
�; �). For example, JJdW’s 2.50 Pmmmð0��Þ becomes

Pmmmð0; �; �Þð0; �; �Þ, and JJdW’s 2.18 Pmmmð00�; 00�Þ
becomes Pmmmð0; 0; �1Þð0; 0; �2Þ.

Our table of Bravais classes for d ¼ 1; 2; 3 is provided in the

SSG(3 + d)D tables. We list 24 classes for d ¼ 1, 83 classes for

d ¼ 2 and 215 classes for d ¼ 3. In addition to the class

symbol, this table includes the transformation to the SCG

setting, as well as the q vectors and centering translations in

both the SCG and BSG settings.

4.2. Superspace groups

Comparison against the ð3þ dÞD SSG tables (d ¼ 1; 2; 3)

prepared by Yamamoto (1996, 2005) provided an opportunity

to test the validity of our tables and the robustness of the tools

that we used to generate them. Using our algorithm for

determining whether two SSGs are equivalent, which uses the

group operators as input, we attempted to identify each of the
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groups in Yamamoto’s tables with groups in our table. This

comparison showed good agreement with his d ¼ 1 table

which also matches the corresponding tables of Orlov &

Chapuis (2005) and of ITC-C. However, we found that

Yamamoto’s d ¼ 2 table is missing six SSGs:

6.2.3.4 Pmð�1; �1;
1
2Þ0ð�2; �2; 0Þs

13.2.5.4 P2=að0; 0; �1Þs0ð0; 0; �2Þ00

14.2.5.2 P21=að0; 0; �1Þ00ð0; 0; �2Þ00

15.2.8.3 B2=bð0; 0; �1Þs0ð0; 0; �2Þ00

20.2.40.6 C2221ð0; �1; 0Þ0s0ð0; 0; �2Þ000

98.2.71.8 I4122ð�; �; 1Þ000ð�; �; 1Þ00s.

We also found that his table contains 59 pairs of SSGs that

are equivalent, e.g. 299 Pmm2ð00p; 0 1
2 qÞ:s0:s0:0 and 300

Pmm2ð00p; 0 1
2 qÞ:ss:s0:0s.

For d ¼ 3, we found that 2806 of the SSG entries in

Yamamoto’s table have operators listed that do not obey a

multiplication table, e.g. 2351 Pba2ð12 rþ 1
2 p; q 1

2 p; qþ 1
2 r0Þd?s.

We could not identify those groups. For entries with valid

operators, however, we were able to match each one to an SSG

in our table. This allowed us to identify 611 pairs of group

entries in Yamamoto’s d ¼ 3 table that proved to be equiva-

lent. We do not list them here, though our SSG(3 + 1)D tables

do cross-reference each group entry to all equivalent groups in

Yamamoto’s tables.

5. Superspace-group symbol

The intrinsic translation of a space-group (or superspace-

group) operator is the origin-invariant part of the translational

component of that operator. Let fR; vg denote an operator

which consists of a point operation R followed by a translation

v. From x8.1.5 of ITC-A, or equation (9.8.3.5) of ITC-C, the

intrinsic translation vI of that operator is calculated as

vI ¼
1

n

Xn

m¼1

Rm

 !
v; ð14Þ

where n is the order of R, i.e. Rn ¼ 1.

The traditional three-dimensional space-group symbols

display the intrinsic translations for each of the non-lattice

generators of a space group in order to distinguish among

groups that correspond to the same symmorphic space group.

Both screw axes and glide planes have non-zero intrinsic

translations (mod 1). Screw axes are represented by adding a

subscript to a rotation-axis generator symbol, and glide planes

are represented by replacing a mirror-plane symbol (‘m’) with

the corresponding glide symbol (‘a’, ‘b’, ‘c’, ‘n’ or ‘d’). For

space group No. 26 (Pmc21), the symbol contains three

generators: a mirror reflection through (100), a c glide through

(010) with an intrinsic translation along [001], and a 21 screw

rotation about [001] also with an intrinsic translation along

[001].

It is important to realize that the part of the space-group

symbol corresponding to a given generator does not uniquely

identify a specific symmetry operator of the space group, but

rather identifies a class of operators (e.g. all of the c-glide

planes perpendicular to the b axis). This many-to-one corre-

spondence between generators and their symbols becomes

problematic when generators of the same class fail to share the

same intrinsic translation, a situation that causes a space

group’s identifying symbol to vary as a function of the

generators selected, even while holding the space-group

setting constant.

For this reason, a system of space-group symbols based on

intrinsic translations does not generally deliver a unique

symbol for each group. By exploring all of the possible sets of

generators consistent with a given space-group symbol, one

often obtains a variety of other symbols that can represent the

same space group, a situation that we refer to as symbol

‘ambiguity’. In some cases, one even encounters a single

symbol or set of symbols that can correctly represent more

than one space group, a situation that we refer to as symbol

‘degeneracy’.

Space-group symbol ambiguity and degeneracy are most

commonly observed in centered groups because a given

generator can be combined with any centering translation to

obtain an equivalent generator that may have a different

intrinsic translation. As a classic example, consider the

combination of the (1
2 ;

1
2 ;

1
2) body-centering translation with

the three twofold rotation generators of space group No. 23

I222. One can either add or not add this translation to each of

the three generators, resulting in 23 ¼ 8 possible combina-

tions, eight different sets of intrinsic translations, and eight

possible symbols for the group: I222, I2221, I2212, I22121,

I2122, I21221, I21212, I212121. Surprisingly, the same procedure

applied to space group No. 24 I212121 produces the same eight

symbols. Thus, the traditional choice of I222 as the symbol for

space group No. 23 and I212121 as the symbol for space group

No. 24 is not grounded purely on the intrinsic translations of

their generators, but rather on other considerations. The only

other pair of three-dimensional space groups which exhibits

symbol degeneracy is I23 and I213.

Lattice translations can also contribute to symbol ambi-

guity. For example, space group No. 100 P4bm has both mirror

and glide planes parallel to the [110] directions. In the symbol,

the third generator is a mirror reflection, though the symmetry

operator listed in ITC-A is (yþ 1
2 ; xþ 1

2 ; z), which has an

intrinsic translation of (1
2 ;

1
2 ; 0) and is therefore actually a glide

reflection. The operator (yþ 1
2 ; x� 1

2 ; z), on the other hand,

has an intrinsic transition of (0, 0, 0), and is therefore a true

mirror reflection. Because both operators generate the same

group, P4bm and P4bg are both appropriate symbols. The use

of P4bm is simply a convention. Also recall that a generator

symbol does not always uniquely specify the orientation of the

associated generator. Depending on the lattice translation

employed, the first ‘m’ in No. 129 P4=nmm indicates a class of

operations that includes mirror planes normal to both the

[100] and [010] directions, while the second ‘m’ indicates a

class of operations that includes both mirror planes and glide

planes normal to both the [110] and [110] directions.

The (3 + 1)D SSG symbols in ITC-C, and their general-

ization in the SSG(3 + d)D tables, also rely on intrinsic

translations in order to provide distinct symbols for distinct

SSGs. For the 230 crystallographic space groups, symbol
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ambiguity and degeneracy problems have been managed on

a case-by-case basis via manually applied conventions. For

(3 + d)D SSGs, however, problems of symbol ambiguity and

degeneracy are greatly compounded and far too numerous for

case-by-case consideration owing to the large number of

rather complex lattice centerings available. In order to assign a

unique and meaningful SSG symbol to each group in the

SSG(3 + d)D tables, we found it necessary to establish strict

systematic conventions for selecting the generators of each

group. We describe these conventions below.

5.1. Generators of basic space group

(1) Because the intrinsic translation of a crystallographic

non-lattice generator can be influenced by its orientation, we

need a convention for choosing the orientation whenever the

generator symbol permits more than one orientation. Table 2

lists all of the crystallographic point-group symbols that have

orientational ambiguities, together with the generators that we

have selected for each one. The generators listed for a given

point group are listed in the same order as the generator

symbols within the point-group symbol, so that the second ‘2’

in 422 corresponds to (y; x; z). While (y; x; z) would also have

been an appropriate generator for this symbol, we simply

choose one orientation and apply it uniformly. In the case

of SSG 90.1.19.1 P4212ð0; 0; �Þ000, the generators in the

SSG(3 + d)D tables are (yþ 1
2 ; xþ 1

2 ; z; t), (xþ 1
2 ; yþ 1

2 ; z; t)

and (y; x; z; t). Observe that the external non-translational

part of each generator is taken directly from Table 2.

(2) In cases where ITC-A presents more than one setting

for a BSG, the SSG(3 + d)D tables use the following setting

conventions: monoclinic cell choice 1, hexagonal axes for

trigonal groups and origin choice 2.

(3) The translational components of the external parts of

the generators of an SSG must be selected so that the corre-

sponding external intrinsic translations strictly match the BSG

symbol in ITC-A. (This choice sometimes differs from the

generators explicitly listed in ITC-A.) While these external

translational components are usually chosen to be positive and

less than 1, we often find it necessary to use equivalent

translational components (i.e. related by a lattice translation)

that lie outside this range in order to ensure that the

generators operate in a way that exactly matches the BSG

symbol. As mentioned above, the last generator of space-

group symbol No. 100 P4bm could either be the

(yþ 1
2 ; xþ 1

2 ; z) g glide or the (yþ 1
2 ; x� 1

2 ; z) mirror opera-

tion. Despite the fact that it includes a negative translational

component, SSG(3 + d)D uses the mirror operation because

its intrinsic translation strictly matches the ‘m’ in the space-

group symbol. And though (yþ 5
2 ; xþ 3

2 ; z) is an equivalent

generating mirror plane, we chose (yþ 1
2 ; x� 1

2 ; z) so as to

keep the absolute values of the translational components as

small as possible while still matching the space-group symbol.

As an example involving a centered lattice, the third generator

of space-group No. 67 Cmma is listed as (x; yþ 1
2 ; z) in ITC-A,

which is actually a b-glide operation. In order to strictly

represent the symbol Cmma, we add centering translation

(1
2 ;

1
2 ; 0) to (x; yþ 1

2 ; z) to obtain (xþ 1
2 ; y; z).

(4) The SSG(3 + d)D tables specify the transformation of

the SSG from the BSG setting to the SCG setting for each

Bravais class, and use this same transformation for every SSG

that belongs to the same Bravais class.

5.2. Choice of internal intrinsic translations

While ITC-A is not generally concerned with the level of

detail described above for three-dimensional space groups,

these restrictions (or conventions) are needed for SSGs in

order to reduce symbol ambiguity and degeneracy to a

manageable level. However, even these BSG conventions still

allow multiple lattice translations (conventional or centering

translations) to be combined with a given generator, so that

additional conventions involving the internal translations are

required. The procedure that we followed has four steps.

Step 1. For the generators of a given SSG, identify every

combination of lattice translations with those generators that

produce a distinct set of internal intrinsic translations (IITs) in

the SCG setting and create the corresponding SSG symbol for

each one. While the set of lattice translations to be explored is

infinite, the finite set of translations that actually needs to be

tested on a generator fRjvg is limited by the fact that adding

the cyclic order n of R to any component of v does not affect

vI .

Step 2. Discard generator sets whose external intrinsic

translations (EITs) in the BSG setting do not strictly match

(mod 1) the symbol of the BSG. This step reduces both symbol

ambiguity and symbol degeneracy.

Step 3. In cases where symbol degeneracy persists (i.e. a set

of SSGs share the same candidate symbols), assign the ‘nicest’

symbol (see step 4 below) to the first SSG in the degenerate

set. Then further restrict the lattice translations that can be

combined with the generators of subsequent SSGs in the

degenerate set by requiring that their EITs in the BSG setting

be exactly identical (not just equivalent mod 1) to those of the
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Table 2
Choice of generators for crystallographic point-group symbols.

Symbol Generators

422 ðy; x; zÞ; ðx; y; zÞ; ðy; x; zÞ
4mm ðy; x; zÞ; ðx; y; zÞ; ðy; x; zÞ
42m ðy; x; zÞ; ðx; y; zÞ; ðy; x; zÞ
4m2 ðy; x; zÞ; ðx; y; zÞ; ðy; x; zÞ
4=mmm ðy; x; zÞ; ðx; y; zÞ; ðx; y; zÞ; ðy; x; zÞ
312 ðy; x� y; zÞ; ðx; y; zÞ; ðy; x; zÞ
321 ðy; x� y; zÞ; ðx; xþ y; zÞ; ðx; y; zÞ
3m1 ðy; x� y; zÞ; ðx; x� y; zÞ; ðx; y; zÞ
31m ðy; x� y; zÞ; ðx; y; zÞ; ðy; x; zÞ
622 ðx� y; x; zÞ; ðx; xþ y; zÞ; ðy; x; zÞ
6mm ðx� y; x; zÞ; ðx; x� y; zÞ; ðy; x; zÞ
6m2 ðxþ y; x; zÞ; ðx; x� y; zÞ; ðy; x; zÞ
62m ðxþ y; x; zÞ; ðx; xþ y; zÞ; ðy; x; zÞ
6=mmm ðx� y; x; zÞ; ðx; y; zÞ; ðx; x� y; zÞ; ðy; x; zÞ
23 ðx; y; zÞ; ðz; x; yÞ
m3 ðx; y; zÞ; ðz; x; yÞ
432 ðy; x; zÞ; ðz; x; yÞ; ðy; x; zÞ
43m ðy; x; zÞ; ðz; x; yÞ; ðy; x; zÞ
m3m ðx; y; zÞ; ðz; x; yÞ; ðy; x; zÞ



first SSG. This step usually lifts the degeneracy and further

reduces symbol ambiguity.

Step 4. When residual symbol ambiguity exists after the

application of the previous steps (i.e. an SSG still has more

than one candidate symbol), use the symbol that has the

‘nicest’ appearance. We determine which symbols are nicest in

our opinion by applying the following rules to the IITs, which

are listed in order of priority: (a) minimum number of nega-

tive components; (b) maximum number of zero components;

(c) minimum value of the maximum denominator among the

components; (d) smallest denominators occur first; (e) smallest

numerators occur first.

Because step 4 resolves symbol ambiguity by selecting the

nicest-looking symbol available, a healthy level of residual

ambiguity is generally helpful. Symbol ambiguity provides

more candidate symbols to choose from and generally results

in nicer-looking symbols. Step 3 is more restrictive than step 2,

and is only applied where step 2 fails to lift a degeneracy. If we

eliminate step 3, we encounter many hundreds of instances of

symbol degeneracy, the most severe example being ten SSGs

that share identical candidate symbols. If we entirely replace

step 2 with the more restrictive step 3, residual symbol

ambiguity is so greatly reduced that step 4 produces symbols

that are unnecessarily complicated. The use of step 2, followed

by the conditional application of step 3, is a practical

compromise that comes close to eliminating symbol degen-

eracy altogether, while also delivering symbols with reason-

ably simple IITs. The handful of residual degeneracies that

survive this process are treated manually in Example 4 below.

An important oddity of these SSG symbols is that the q

vectors are displayed in the BSG setting while the internal

translations are displayed in the SCG setting. It is important to

display the q vectors in the BSG setting because the symbol is

based primarily on the BSG symbol itself. If we were to display

the Q vectors in the SCG setting instead, we would need to

replace the BSG symbol with a unique supercentered lattice-

type name (16 types for d ¼ 1, 44 types for d ¼ 2 and 119

types for d ¼ 3), which would be impractical. Furthermore,

the intrinsic translations that arise in the BSG setting when a

complicated supercentered lattice is present tend to be unin-

tuitive and are subject to additional ambiguities. The IITs in

the SCG setting are much more desirable as symbol elements,

despite the fact that our conventions for restricting them must

be applied in the BSG setting. It is readily apparent that these

same issues were carefully considered when the (3 + 1)D one-

line symbols in ITC-C were formulated.

5.2.1. Example 1. 48.2.51.12 Pnnnð12 ; �; �Þq0qð12 ; �; �Þqq0.

The generators in the SCG setting are (X;Y þ 1
2 ;Z þ 1

2 ;
T þ 1

4 ;U þ 1
4), (X þ 1

4 ;Y;Z þ 1
2 ;T;U þ 1

4) and (X þ 1
4 ;

Y þ 1
2 ;Z;T þ 1

4 ;U). There are four centering translations for

this Bravais class. In Table 3, we list the possible IITs that we

found for each generator. Note that although two of the

centering translations change the EITs in the SCG setting of

the second and third generators, they do not change the EITs

in the BSG setting of those generators and are therefore

allowed. Based on four symbol sets for the first generator and

two unique symbol sets for the second and third generators,

we have 16 possible symbols for this SSG. Of these, the nicest-

looking one is the one without any minus signs.

5.2.2. Example 2. 100.2.68.12 P4bmð�; �; 0Þ00sð�; �; 0Þ000.

In this case, though there are no centering translations (thus

no distinction between the BSG setting and the SCG setting),

we can still obtain different symbols by applying integer lattice

translations to the generators. Table 4 shows the intrinsic

translations associated with the group generators, including

multiple outcomes associated with different lattice transla-

tions.

In this case, the two distinct intrinsic translations associated

with the second generator lead to two possible symbols:

P4bmð�; �; 0Þ00sð�; �; 0Þ000 and P4bmð�; �; 0Þ0ssð�; �; 0Þ0s0.

We choose the symbol with the greatest number of zeros.

5.2.3. Example 3. 47.2.36.60 Pmmmð12 ; �1;
1
2Þ000ð12 ; 0; �2Þ000

is the first of four groups in its VIT class. For the sake of

brevity, let us just consider its first generator, which is

(x; y; z; xþ t; xþ u) in the BSG setting and (X;Y;Z;T;U) in

the SCG setting, where there are four centering translations:

ð0; 0; 0; 0; 0Þ, ð12 ; 0; 0; 1
2 ;

1
2Þ, ð0; 0; 1

2 ;
1
2 ; 0Þ and ð12 ; 0; 1

2 ; 0; 1
2Þ. Table

5 shows the intrinsic translation of the first group generator in

the SCG setting when combined with each of these centering

translations.

Note that although the last two centering translations

actually change the EITs in the SCG setting, they do not affect
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Table 3
Possible internal intrinsic translations for generators in 48.2.51.12 Pnnnð12 ; �; �Þq0qð12 ; �; �Þqq0.

Original generator Lattice translation New generator IIT IIT symbols

ðX;Y þ 1
2 ;Z þ 1

2 ;T þ 1
4 ;U þ 1

4Þ ð0; 0; 0; 0; 0Þ ðX;Y þ 1
2 ;Z þ 1

2 ;T þ 1
4 ;U þ 1

4Þ
1
4 ;

1
4 q; q

ð12 ; 0; 0; 0; 1
2Þ ðX þ 1

2 ;Y þ 1
2 ;Z þ 1

2 ;T þ 1
4 ;U � 1

4Þ
1
4 ;

1
4 q; q

ð0; 0; 0; 1
2;

1
2Þ ðX;Y þ 1

2 ;Z þ 1
2 ;T � 1

4 ;U � 1
4Þ

1
4;

1
4 q; q

ð12 ; 0; 0; 1
2; 0Þ ðX þ 1

2 ;Y þ 1
2 ;Z þ 1

2 ;T � 1
4 ;U þ 1

4Þ
1
4;

1
4 q; q

ðX þ 1
4 ;Y;Z þ 1

2 ;T;U þ 1
4Þ ð0; 0; 0; 0; 0Þ ðX þ 1

4 ;Y;Z þ 1
2 ;T;U þ 1

4Þ 0; 1
4 0; q

ð12; 0; 0; 0; 1
2Þ ðX � 1

4 ;Y;Z þ 1
2 ;T;U � 1

4Þ 0; 1
4 0; q

ð0; 0; 0; 1
2 ;

1
2Þ ðX þ 1

4 ;Y;Z þ 1
2 ;T þ 1

2 ;U � 1
4Þ 0; 1

4 0; q

ð12; 0; 0; 1
2 ; 0Þ ðX � 1

4 ;Y;Z þ 1
2 ;T þ 1

2 ;U þ 1
4Þ 0; 1

4 0; q

ðX þ 1
4 ;Y þ 1

2 ;Z;T þ 1
4 ;UÞ ð0; 0; 0; 0; 0Þ ðX þ 1

4 ;Y þ 1
2 ;Z;T þ 1

4 ;UÞ 1
4 ; 0 q; 0

ð12; 0; 0; 0; 1
2Þ ðX � 1

4 ;Y þ 1
2 ;Z;T þ 1

4 ;U þ 1
2Þ

1
4 ; 0 q; 0

ð0; 0; 0; 1
2;

1
2Þ ðX þ 1

4 ;Y þ 1
2 ;Z;T � 1

4 ;U þ 1
2Þ

1
4; 0 q; 0

ð12; 0; 0; 1
2; 0Þ ðX � 1

4 ;Y þ 1
2 ;Z;T � 1

4 ;UÞ 1
4; 0 q; 0



the EITs (mod 1) in the BSG setting. So we are allowed to

consider them because they still agree with the BSG symbol.

While we would like to assign the nicest symbol, which is the

one with the greatest number of zeros, the other three

members of the VIT class turn out to share the same set of

candidate symbols. We refer to these four groups as a symbol-

degenerate set. Our procedure requires that we assign the

nicest symbol to the first group in the set, and then further

restrict the translations that can be combined with the

generators of the other groups in the set to include only those

translations that have all-zero external components. The only

translation that fits this requirement is (0, 0, 0, 0, 0), so that the

other three groups now have only one possible symbol. This

procedure lifts the symbol degeneracy and results in the

following symbols:

47.2.36.60 Pmmmð12 ; �1;
1
2Þ000ð12 ; 0; �2Þ000

47.2.36.61 Pmmmð12 ; �1;
1
2Þ000ð12 ; 0; �2Þ0s0

47.2.36.62 Pmmmð12 ; �1;
1
2Þ000ð12 ; 0; �2Þs00

47.2.36.63 Pmmmð12 ; �1;
1
2Þ000ð12 ; 0; �2Þss0.

In general, a single VIT class can contain a combination of

multiple non-degenerate groups and symbol-degenerate sets

of groups. This case was simple in that the entire VIT class

comprised one symbol-degenerate set.

5.2.4. Example 4.

16:3:137:108 P222ð0; �; �Þ000ð�; 0; �Þ000ð�; �; 0Þ000

and

16:3:137:109 P222ð0; �; �Þ000ð�; 0; �Þ000ð�; �; 0Þ00s

belong to a Bravais class with two centering translations:

ð0; 0; 0; 0; 0; 0Þ and ð0; 0; 0; 1
2 ;

1
2 ;

1
2Þ. Tables 6 and 7 show the

intrinsic translations of the generators of both groups when

combined with each of these centering translations.
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Table 5
Possible intrinsic translations for the first generator in 47.2.36.60 Pmmmð12 ; �1;

1
2Þ000ð12 ; 0; �2Þ000.

Lattice translation SCG setting New generator SCG setting New generator BSG setting IIT SCG setting IIT symbol

ð0; 0; 0; 0; 0; 0Þ ðX;Y;Z;T;UÞ ðx; y; z; xþ t; xþ uÞ 0; 0 0; 0

ð12 ; 0; 0; 1
2 ;

1
2Þ ðX þ 1

2 ;Y;Z;T þ 1
2 ;U þ 1

2Þ ðxþ 1; y; z; xþ t þ 1; xþ uþ 1Þ 1
2 ;

1
2 s; s

ð0; 0; 1
2 ;

1
2 ; 0Þ ðX;Y;Z þ 1

2 ;T þ 1
2 ;UÞ ðx; y; zþ 1; xþ t þ 1; xþ uÞ 1

2 ; 0 s; 0

ð12 ; 0; 1
2 ; 0; 1

2Þ ðX þ 1
2 ;Y;Z þ 1

2 ;T;U þ 1
2Þ ðxþ 1; y; zþ 1; xþ t þ 1; xþ uþ 1Þ 0; 1

2 0; s

Table 4
Possible intrinsic translations for generators in 100.2.68.12 P4bmð�; �; 0Þ00sð�; �; 0Þ000.

Original generator Lattice translation New generator IIT IIT symbols

ðy; x; z; u; tÞ ð0; 0; 0; 0; 0Þ ðy; x; z; u; tÞ 0; 0 0; 0

ðxþ 1
2 ; yþ 1

2 ; z; uþ 1
2 ; t þ 1

2Þ ð0; 0; 0; 0; 0Þ ðxþ 1
2 ; yþ 1

2 ; z; uþ 1
2 ; t þ 1

2Þ
1
2 ;

1
2 s; s

ð0; 0; 0; 0; 1Þ ðxþ 1
2 ; yþ 1

2 ; z; uþ 1
2 ; t � 1

2Þ 0; 0 0; 0

ðyþ 1
2 ; x� 1

2 ; z; t þ 1
2 ; uþ 1

2Þ ð0; 0; 0; 0; 0Þ ðyþ 1
2 ; x� 1

2 ; z; t þ 1
2 ; uþ 1

2Þ
1
2 ; 0 s; 0

Table 6
Possible intrinsic translations for generators in 16.3.137.108 P222ð0; �; �Þ000ð�; 0; �Þ000ð�; �; 0Þ000.

Original generator Lattice translation New generator IIT IIT symbols

ðX;Y;Z;T;U;VÞ ð0; 0; 0; 0; 0; 0Þ ðX;Y;Z;T;U;VÞ 0; 0; 0 0; 0; 0

ð0; 0; 0; 1
2 ;

1
2 ;

1
2Þ ðX;Y;Z;T þ 1

2 ;U þ 1
2 ;V þ 1

2Þ
1
2 ; 0; 0 s; 0; 0

ðX;Y;Z;T;U;VÞ ð0; 0; 0; 0; 0; 0Þ ðX;Y;Z;T;U;VÞ 0; 0; 0 0; 0; 0

ð0; 0; 0; 1
2 ;

1
2 ;

1
2Þ ðX;Y;Z;T þ 1

2 ;U þ 1
2 ;V þ 1

2Þ 0; 1
2 ; 0 0; s; 0

ðX;Y;Z;T;U;VÞ ð0; 0; 0; 0; 0; 0Þ ðX;Y;Z;T;U;VÞ 0; 0; 0 0; 0; 0

ð0; 0; 0; 1
2 ;

1
2 ;

1
2Þ ðX;Y;Z;T þ 1

2 ;U þ 1
2 ;V þ 1

2Þ 0; 0; 1
2 0; 0; s

Table 7
Possible intrinsic translations for generators in 16.3.137.109 P222ð0; �; �Þ000ð�; 0; �Þ000ð�; �; 0Þ00s.

Original generator Lattice translation New generator IIT IIT symbols

ðX;Y;Z;T;U þ 1
2 ;VÞ ð0; 0; 0; 0; 0; 0Þ ðX;Y;Z;T;U þ 1

2 ;VÞ 0; 0; 0 0; 0; 0

ð0; 0; 0; 1
2 ;

1
2;

1
2Þ ðX;Y;Z;T þ 1

2 ;U;V þ 1
2Þ

1
2 ; 0; 0 s; 0; 0

ðX;Y;Z;T;U;V þ 1
2Þ ð0; 0; 0; 0; 0; 0Þ ðX;Y;Z;T;U;V þ 1

2Þ 0; 0; 0 0; 0; 0

ð0; 0; 0; 1
2 ;

1
2 ;

1
2Þ ðX;Y;Z;T þ 1

2 ;U þ 1
2 ;VÞ 0; 1

2 ; 0 0; s; 0

ðX;Y;Z;T þ 1
2 ;U;VÞ ð0; 0; 0; 0; 0; 0Þ ðX;Y;Z;T þ 1

2 ;U;VÞ 0; 0; 0 0; 0; 0

ð0; 0; 0; 1
2;

1
2 ;

1
2Þ ðX;Y;Z;T;U þ 1

2 ;V þ 1
2Þ 0; 0; 1

2 0; 0; s



Observe that, in this case, both centering translations have

all-zero external components, so that we still obtain the same

set of candidate symbols for each group. Thus, our conventions

do not entirely prevent SSG symbol degeneracy. However,

instances of residual degeneracy prove to be very rare and are

easily resolved by manually assigning appropriate generators.

In this case, the symmorphic group 16.3.137.108 clearly has a

greater claim on the symbol with all-zero translations. For

16.3.137.109, we simply choose the next-nicest symbol, which

happens to include one ‘s’. In total, there are seven pairs of

groups (listed in Table 8) that exhibit residual twofold symbol

degeneracy. In each case, one of the groups is symmorphic and

receives the symbol with no translational components, while

the other group gets the next-nicest symbol available. It is

interesting that the three-dimensional internal part of each of

these (3 + 3)D SSGs is identical to one of I222, I212121, I23 or

I213.

5.2.5. Comparison against (3 + 1)D symbols in ITC-C.

There are only 11 SSGs for which the symbol that follows from

our conventions as described above is different from the

corresponding ITC-C symbol. These cases are listed in Table 9.

For eight of these SSGs, our method found a ‘nicer’ symbol.

For the remaining three SSGs, our method could not obtain

the symbol in ITC-C without using EITs that did not strictly

match the symbol of the BSG.

We do not want to advocate changing the (3 + 1)D symbols

established in ITC-C. Therefore, we propose to continue using

those symbols, and not the new symbols generated by our

method.

5.2.6. Internal-space origin. Because

we are concerned about the impact that

the detailed form of the generators has

on the SSG symbol, the SSG(3 + d)D

tables list the generators used to obtain

the preferred symbol explicitly. In order

to make these generators (and group

operators) more meaningful, we have

established a procedure for uniquely

specifying the origin of each SSG. The

origin affects the total translational

components of each operator, but not their intrinsic transla-

tions. We already set the external-space origin of each SSG to

match that of the conventional setting of the corresponding

BSG in ITC-A. Only the internal-space origin needs to be

addressed here. We set the d-dimensional internal-space origin

of a (3 + d)D SSG as follows:

(1) Beginning with group operators that have been defined

relative to an arbitrary internal-space origin in the SCG

setting, first isolate the internal-space portions of each of the

operators in the SCG setting, including the centering trans-

lations. For d ¼ 1 or d ¼ 2 groups, further extend each

operator to three dimensions by adding extra rows and

columns with unity on diagonal and zeros off diagonal. The

resulting group of operators must be equivalent to one of the

230 crystallographic space groups.

(2) Find the affine transformation that takes these operators

into the conventional setting of the corresponding three-

dimensional group in ITC-A, and decompose this transfor-

mation into two sequential operations: an origin shift followed

by a point operation. Then extract the d-dimensional part of

this three-dimensional origin shift and apply it to the internal-

space portions of each of the original SSG operators.

(3) If the BSG is centrosymmetric, apply an additional

internal-space origin shift to each of the operators (if neces-

sary) in order to place the inversion at the origin of the

internal space. This internal-space convention is analogous to

the external-space preference for origin choice 2.

In the future, the crystallographic community may even-

tually converge on a more elegant way to select the internal-

space origin. Our origin-selection procedure is straightforward

and meets an immediate need, but cannot be extended to

superspace dimensions higher than 3 + 3.

6. Conclusions

Our Bravais-class tables are in agreement with those of JJdW

for d ¼ 1 and d ¼ 2. Our d ¼ 3 table of Bravais classes,

however, corrects omissions and duplicate classes in the

corresponding table in JJdW, which also led us to renumber

and partially reorder this table. Our d ¼ 1 table of SSGs

agrees well with those of Orlov & Chapuis, Yamamoto and

ITC-C. We have exhaustively corrected omissions and dupli-

cate entries in Yamamoto’s d ¼ 2 table, and also corrected

many duplicate entries in Yamamoto’s d ¼ 3 SSG table. The

d ¼ 3 comparison was limited by the fact the operators of
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Table 8
Pairs of SSGs that exhibit residual twofold symbol degeneracy.

16.3.137.108 P222ð0; b; gÞ000ða; 0; gÞ000ða; b; 0Þ000 16.3.137.109 P222ð0; b; gÞ000ða; 0; gÞ000ða; b; 0Þ00s
21.3.142.105 C222ð0; b; gÞ000ða; 0; gÞ000ða; b; 0Þ000 21.3.142.106 C222ð0; b; gÞ000ða; 0; gÞ000ða; b; 0Þ00s
22.3.144.37 F222ð0; b; gÞ000ða; 0; gÞ000ða; b; 0Þ000 22.3.144.38 F222ð0; b; gÞ000ða; 0; gÞ000ða; b; 0Þ00s
23.3.141.15 I222ð0; b; gÞ000ða; 0; gÞ000ða; b; 0Þ000 23.3.141.16 I222ð0; b; gÞ000ða; 0; gÞ000ða; b; 0Þ00s
195.3.210.7 P23ð0; b; bÞ00ðb; 0; bÞ00ðb; b; 0Þ00 195.3.210.8 P23ð0; b; bÞ00ðb; 0; bÞ00ðb; b; 0Þs0
196.3.212.5 F23ð0; b; bÞ00ðb; 0; bÞ00ðb; b; 0Þ00 196.3.212.6 F23ð0; b; bÞ00ðb; 0; bÞ00ðb; b; 0Þs0
197.3.211.3 I23ð0; b; bÞ00ðb; 0; bÞ00ðb; b; 0Þ00 197.3.211.4 I23ð0; b; bÞ00ðb; 0; bÞ00ðb; b; 0Þs0

Table 9
SSGs for which the symbol that follows from our conventions is different
from the corresponding ITC-C symbol.

Group ITC-C symbol Symbol using our conventions

35.1.14.5 Cmm2ð1; 0; �Þs0s Cmm2ð1; 0; �Þs00

36.1.14.4 Cmc21ð1; 0; �Þs0s Cmc21ð1; 0; �Þs00

37.1.14.4 Ccc2ð1; 0; �Þs0s Ccc2ð1; 0; �Þs00

42.1.18.5 Fmm2ð1; 0; �Þs0s Fmm2ð1; 0; �Þs00

99.1.20.6 P4mmð12 ;
1
2 ; �Þ0ss P4mmð12 ;

1
2 ; �Þ00s

101.1.20.4 P42cmð12 ;
1
2 ; �Þ0ss P42cmð12 ;

1
2 ; �Þ00s

104.1.20.3 P4ncð12 ;
1
2 ; �Þqq0 P4ncð12 ;

1
2 ; �Þqqs

106.1.20.3 P42bcð12 ;
1
2 ; �Þqq0 P42bcð12 ;

1
2 ; �Þqqs

123.1.20.6 P4=mmmð12 ;
1
2 ; �Þ00ss P4=mmmð12 ;

1
2 ; �Þ000s

126.1.20.3 P4=nncð12 ;
1
2 ; �Þq0q0 P4=nncð12 ;

1
2 ; �Þq0qs

132.1.20.4 P42=mcmð12 ;
1
2 ; �Þ00ss P42=mcmð12 ;

1
2 ; �Þ000s



some of Yamamoto’s d ¼ 3 groups do not obey a multi-

plication table.

For d> 1, we employed SSG symbols that are a direct

extension of the d ¼ 1 one-line symbols in ITC-C, and

therefore include the three-dimensional basic space-group

symbol and the modulation vectors in the BSG setting, as well

as the IITs of the generators in the SCG setting. If specific

labels were assigned to each of the many (3 + d)D super-

centered lattice types, one could alternatively define a new

type of symbol based only on the SCG setting, analogous to

the three-dimensional space-group symbols in ITC-A. But the

number of lattice types increases rapidly with internal

dimension, making this approach impractical. We felt it best to

directly extend the one-line symbols of ITC-C, despite the fact

that they must be interpreted using two different settings

(BSG and SCG).

Because the IITs in the SSG symbol vary according to the

specific form of the group generators used, we applied a

system of conventions that algorithmically determines a

unique set of canonical generators, and hence a unique

symbol, for each group. We resolve symbol ambiguity by

choosing the nicest-looking symbol available to a given group

(i.e. nicest set of SCG IITs). Thus, increased ambiguity

provides more candidate symbols to choose from and gener-

ally results in a nicer symbol. However, increased ambiguity

goes hand in hand with increased symbol degeneracy, which is

generally unacceptable. After exploring the consequences of a

variety of different approaches, we selected the current

conventions because they were easy to apply and also

provided a reasonable compromise between the competing

need to reduce symbol degeneracy and improve symbol

appearance. The restrictions that we imposed on the BSG

EITs eliminated symbol degeneracies for all but seven pairs of

SSGs, where we then selected the SCG IITs manually.

A new online data repository called SSG(3 + d)D contains a

wealth of new information about each of the d ¼ 1, d ¼ 2 and

d ¼ 3 groups, including the SSG symbol, cross-references to

other SSG tables, an explicit description of the transformation

between the BSG and SCG settings, a list of enantiomorphic

groups if any, and a minimal list of independent reflection

conditions. It also includes lists of canonical generators,

complete lists of group operators, and lists of centering

translations for both the BSG and SCG settings of each SSG.

APPENDIX A
The following is a list of abbreviations used in this paper:

SSG(3 + d)D, online data at http://stokes.byu.edu/ssg.html

BSG, basic space group

BSG setting, basic space-group setting of a superspace

group

EIT, external intrinsic translation

IIT, internal intrinsic translation

ITC-A and ITC-C, International Tables for Crystallography,

Vols. A and C, respectively

JJdW, Janner, Janssen & de Wolf (1983)

SCG setting, supercentered group setting of a superspace

group

SSG, superspace group

VIT class, variable internal translation class.
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